
Security Applications of Extended BPF Under the Linux
Kernel
COMP5900T OS Security Research Paper

WILLIAM FINDLAY, School of Computer Science, Carleton University

Abstract
Extended BPF (eBPF) is an emergent technology for system observ-

ability under the Linux kernel. While eBPF is commonly used for

performance tracing [19], it also has tremendous potential with

respect to operating system security, thanks to its ability to observe

arbitrary system state under strict safety guarantees [36, 37]. This

paper will discuss eBPF’s role in the OS security landscape; in par-

ticular, a pattern emerges that establishes current research in this

area as being predominantly focused on networking stack security

and network-based data collection. To rectify this gap in host-based

eBPF security research, I will present two novel applications of eBPF

in OS security: ebpH [14], a host-based eBPF anomaly detection sys-

tem, and bpfbox, a new sandboxing technique that leverages BPF

programs to enforce seccomp rules externally and transparently to

the target application.

Additional KeyWords and Phrases: eBPF, Operating System Security,

Linux, Sandboxing, Anomaly Detection

1 INTRODUCTION
Since its 2014 addition to the Linux kernel [37], extended BPF

(eBPF) has been providing Linux users with powerful tools to

observe many aspects of system behavior, both in userspace

and in kernelspace. While eBPF often sees use as a means of

developing performance monitoring tools, it also presents an

opportunity for use within the domain of computer security.

In particular, eBPF can provide a safe and efficient means of

data collection for intrusion detection systems [14, 19]. New

BPF program types like XDP [20] are capable of inspecting

and filtering packets via direct memory access before they
reach the kernel networking stack – a property which is

ideal for responsive network intrusion detection systems [4,

11, 28] and DDoS (distributed denial of service) mitigation

[2]. The enhanced observability provided by eBPF also offers

system administrators the option to write tools to monitor

various security-sensitive operations on the system, such as

execve(2) calls, privilege escalation, permission errors on

system calls, or even the usage of POSIX capabilities [19].

Author’s address: William Findlay School of Computer Science, Carleton

University, william@williamfindlay.com.

This paper will examine the role of both eBPF and classic

BPF as they pertain to operating system security. In particular,

I will present several eBPF solutions that focus predominantly

on various layers of the kernel’s networking stack, as well

as classic BPF technologies like seccomp-bpf [1, 34] and

tcpdump [42]. A common theme throughout eBPF-related se-

curity solutions is that they tend to focus on the networking

stack specifically, despite eBPF’s wide range of capabilities

with respect to system introspection. To fill this perceived gap

in the research, I will briefly discuss two novel approaches to

OS security using eBPF. ebpH [14] is an anomaly detection

system that I built for my thesis, which instruments system

call patterns using BPF programs. bpfbox is a prototype sand-
boxing application built in eBPF that allows for seccomp-like
policy to be enforced externally and transparently to the tar-

get application. In the context of ebpH, bpfbox, and existing

work in networking stack instrumentation, I will then discuss

the potential for future eBPF security solutions that take a

more holistic approach to system monitoring.

Section 2 provides a high-level background on classic BPF

and extended BPF, highlighting the key similarities and differ-

ences between the two, as well as presenting some security-

related use cases for each. Section 3 discusses how eBPF

compares to other system introspection techniques, with

an emphasis on observability, scalability, performance, and

production safety; this will help to establish the unique ad-

vantages that eBPF has over conventional data collection

techniques. Section 4 discusses classic BPF and extended BPF

approaches to securing the networking stack, highlighting

the current focus of eBPF-related security research on net-

work monitoring and policy enforcement therein. Section 5

discusses other aspects of OS security as they relate to both

classic and extended BPF. In particular, it will present classic

BPF approaches to sandboxing through seccomp-bpf, along
with two new eBPF systems, ebpH and bpfbox, for host-based
anomaly detection and externally enforceable sandboxing

respectively. Section 6 discusses the overall research trends

described in this paper and presents potential topics for fu-

ture work, with emphasis on new directions for ebpH and

bpfbox. Finally, the paper concludes with Section 7.



2 • William Findlay

2 BACKGROUND
While extended BPF is still a relatively new technology in

the Linux kernel [36, 37], its predecessor, the classic Berkeley

Packet Filter (cBPF) has been around for over 20 years [27],

even prior to its introduction to Linux. Here, I provide some

background on classic BPF, examining its original design and

early use cases. I will then highlight the various improve-

ments and features that have been introduced in extended

BPF, particularly with respect to full system observability.

Finally I will briefly discuss the naming conventions that will

be used throughout the rest of this paper to refer to various

aspects of BPF.

2.1 Classic BPF
McCanne and Jacobson [27] first introduced the Berkeley

Packet Filter in 1992 as a virtual machine for the BSD Unix

kernel, capable of running custom user-specified bytecode

instructions in kernelspace; this technology permitted the

construction of extremely efficient tap-and-filter mechanisms

for network traffic.

Classic BPF’s primary contributions at the time were its

unique register-based virtual machine language and its heavy

use of buffering to reduce packet capture overhead [27]. These

two key design advantages allowed it to significantly out-

perform its contemporary competitors. Extended BPF (c.f.

Section 2.2) would later take these same design elements

and extend them to provide enhanced capabilities. Refer to

Figure 1 for an overview of classic BPF’s architecture.

Fig. 1. An overview of classic BPF architecture. Adapted from [27].

Classic BPF was eventually merged into the Linux kernel

in version 2.5 [19] and saw some further use in security appli-

cations such as seccomp-bpf [1, 34], a mechanism for defin-

ing rules for system call interposition in userspace. tcpdump
[42], a popular packet tracing tool, also leverages classic BPF

for its functionality. I will discuss these classic BPF tools and

use cases further in Section 4.1 and Section 5.1.

2.2 Extended BPF
In 2013, Starovoitov [19, 36] had the idea to take the original

BPF paradigm specified by McCanne and Jacobson [27] and

extend it beyond its intended use case (i.e. packet filtering).

His visionwas to construct a general-purpose virtual machine

capable of running event-based user-specified bytecode in

kernelspace. In particular, eBPF introduced 10 64-bit regis-

ters
1
, a 512-byte stack size, support for calling whitelisted

kernel helpers with negligible overhead, various map data

structures, JIT compilation to native code, and several new

ways of instrumenting both kernelspace and userspace [19].

Quintessentially, eBPF also comes with guaranteed safety,

due to the in-kernel verifier (c.f. Section 2.2.1) that analyzes

all submitted code before it may be run in the kernel. Figure 2

depicts eBPF’s architecture in detail.

Fig. 2. An overview of extended BPF architecture. Taken from [14]
with permission. Note the key differences between the architecture
presented here and that of classic BPF from Figure 1. In particular,
eBPF allows far more functionality than classic BPF (n.b. the eBPF
program types depicted here do not comprise an exhaustive list,
but are representative of the most commonly used program types).

eBPF’s primary advantages over traditional system intro-

spection techniques are three-fold:

1) Fine-grained control over context switch frequency for

map access from userspace, which allows for significant

overhead improvements when compared to alternatives

like ptrace(2) [31];
2) Seamless integration between userspace and kernelspace

instrumentation with bidirectional information flow be-

tween BPF programs, userspace applications, and other

BPF programs;

1
This includes an extra read-only frame pointer for a total of 11 [19].



Security Applications of Extended BPF Under the Linux Kernel • 3

3) Production-safe kernel introspection due to the verifica-

tion step before loading BPF programs into kernelspace.

These properties position eBPF uniquely within the sys-

tem introspection landscape, particularly as a tool for system

performance monitoring, debugging, observability, and se-

curity, especially in the context of performance and safety-

sensitive production environments.

2.2.1 The eBPF Verifier: Trusting the Untrusted. To allow

untrusted
2
user code to be run safely in kernelspace, eBPF

employs a verifier that checks submitted bytecode for safety

before it is allowed to run. As of Linux 5.6 [25], the verifier is

comprised of just over 10,000 lines of C code and is invoked

on every attempt to submit a BPF program to kernelspace

via the bpf(2) system call [7].

Ascertaining program safety involves several restrictions

on both the BPF instruction set itself and on various aspects

of BPF program state, including:

1) No support for unbounded loops (previously the verifier

prohibited all loops, but a 5.3 kernel patch [38] added sup-

port for bounded loops on verifiable induction variables);

2) A hard limit of 512 bytes on stack space per BPF program;

3) No unbounded memory access attempts (i.e. the program

is required to perform a bounds check before indexing an

array);

4) Restricted access to kernel helper functions;

5) A hard limit of 1 million instructions per BPF program

(previously this limit was as low as 4096, but was also

raised in Linux 5.1).

While these restrictions may seem extreme, they are nec-

essary in order to allow the verifier to accept valid programs

and reject invalid programs with certainty. In practice, these

restrictions are not difficult to work around and frequent

patches to the verifier’s functionality continue to offer im-

provements in this regard.

2.3 Naming Conventions in this Paper
Throughout this paper, I will be referring to the original BPF

[27] as classic BPF (cBPF), and extended BPF as either eBPF

or simply BPF. This is done for philosophical reasons and

in order to avoid confusion between the two technologies,

particularly as the classic BPF implementation in Linux has

been completely replaced by eBPF [19], and the former is a

subset of the latter.

2
As of Linux 5.6, all BPF programs still require the CAP_SYS_ADMIN privilege
in order to be submitted to the kernel [7], though this may change in the

future. "Untrusted" in this context simply means code that comes directly

from userspace via the bpf(2) system call.

3 COMPARING EBPF TO OTHER SYSTEM
INTROSPECTION TECHNIQUES

In many ways, security is about what we can see; more for-

mally, the ability to detect and respond to attacks on a system

is limited by the ability to measure the state of said system.

Without the ability to detect changes in system state, attacks

may either go unnoticed entirely or may be detected too late

to prevent any lasting or meaningful damage. System intro-

spection provides a means of collecting data about system

state which can then be used to detect violations in policy,

enforce policy, and even build or generate new policy. This

section will cover many of the popular system introspection

techniques employed on Linux, highlighting their respective

strengths and weaknesses, and ultimately showing that eBPF

fills important gaps in the existing system introspection land-

scape that make it ideal for building robust, secure systems

that can be deployed in a production environment. Table 1

provides a summary comparison of the various techniques

described in this section.

The ptrace(2) system call [31] forms the basis for the

implementation of several debugging and observability tools

available on Linux, including strace [39, 40] and gdb [17].

While ptrace(2) provides a high degree of observability in

userspace and even across the userspace-kernelspace bound-

ary, it suffers from poor production safety due to bugs, limited

scope
3
, and very poor performance overhead, typically on

the order of 10–100× [22], and up to 442× in the worst case

[18]. This poor performance can be attributed to an extraor-

dinarily high number of context switches required between

userspace and kernelspace in the traced process as well as

the continual pausing of process execution on both system

call entry and return. Ultimately, these characteristics render

ptrace(2) an unacceptable choice for use cases beyond sim-

ple debugging, and certainly untenable for the production

security monitoring that we desire.

ftrace [33] and perf events [43] are Linux subsys-

tems for instrumenting tracepoints and hardware perfor-

mance counters respectively. These implementations are pro-

vided in the kernel source and expose APIs to userspace

— ftrace in the form of a virtual filesystem under sysfs,
and perf_events via the perf_event_open(2) [43] system

call. Both of these subsystems suffer from relatively poor

interfaces and are eclipsed entirely by the functionality of

extended BPF (which uses both of these subsystems for its

tracepoint and perf counter functionality [19]).

Library call interposition is a technique that allows tracer

programs to hook into calls to shared libraries (usually by

3ptrace(2) may not be used to attach to processes outside of the tracer’s

hierarchy without modifying kernel security parameters. Additionally, it is

not feasible to use ptrace(2) on every process on the system.



4 • William Findlay

Table 1. Comparing the popular Linux system introspection techniques. ● represents a satisfied requirement, ◗ represents a partially
satisfied requirement, and ❍ represents an unsatisfied requirement. Note that eBPF covers every requirement, including production safety.

Technique S
y
s
te
m

W

id
e

P
r
o
d
u
c
ti
o
n
S
a
fe

E
ffi

c
ie
n
t

U
s
e
r
s
p
a
c
e
F
u
n
c
ti
o
n
s

L
ib
r
a
r
y
C
a
ll
s

K
e
r
n
e
ls
p
a
c
e
F
u
n
c
ti
o
n
s

S
y
s
te
m

C
a
ll
s

S
o
c
k
e
ts

P
a
c
k
e
ts

R
e
g
is
te
r
s

H
a
r
d
w
a
r
e
P
e
r
f.
C
tr
s
.

ptrace(2) ❍ ❍ ❍ ● ◗ ❍ ● ❍ ❍ ● ❍

Library Call Interposition ● ● ● ◗ ● ❍ ❍ ❍ ❍ ❍ ❍

ftrace ● ● ● ❍ ❍ ● ● ● ❍ ❍ ❍

perf events ● ● ● ❍ ❍ ❍ ❍ ❍ ❍ ❍ ●

Kernel Module ● ❍ ● ◗ ◗ ● ● ● ● ● ●

Module + Userspace Library ● ❍ ● ◗ ● ● ● ● ● ● ●

Netfilter ● ● ◗ ❍ ❍ ❍ ❍ ❍ ● ❍ ❍

Classic BPF ● ● ● ❍ ❍ ❍ ❍ ❍ ● ❍ ❍

eBPF ● ● ● ● ● ● ● ● ● ● ●

Scope/Safety/Efficiency Observability

trampolining, e.g. from a custom function into the actual

implementation). Kuperman et al. [24] first proposed using

this technique to generate audit data in a 1999 paper, although

a more well-known use case is in debugging programs such

as ltrace [9]. In general, library call interposition is safe to

do and can be quite performant — especially when compared

to solutions such as ptrace(2)— although it loses out on the

ability to observe other aspects of system behavior, especially

in kernelspace.

In principle, a solution that comprises all potential data

sources in the system must (at least in part) be implemented

in kernelspace. Traditionally, modifications to the Linux ker-

nel must occur either in the form of loadable kernel modules

or direct patches to the kernel code itself. Loadable kernel

modules allow for runtime modifications to the kernel’s ad-

dress space, which means the ability to load arbitrary code,

and look up or modify essentially any address. This naturally

lends itself to system tracing, as it essentially provides the

means to hook into any event on the system. Strictly speak-

ing, it would also be possible to hook into arbitrary userspace

events using a module alone, although this becomes messy

and complicated quite quickly, and so the favored approach

tends to be combining a kernel module with some sort of

userspace library and library call interposition, as described

in the previous paragraph. Many popular tracingmechanisms

such as Sysdig [41], SystemTap [32], and LTTng [26] take

this hybrid approach. While kernel modules represent the

most powerful technique discussed thus far, they are also the

most dangerous. Bugs in kernel code can be catastrophic to

a system. In the best case, the result is a kernel panic, tanta-

mount to denial of service; in the worst case, buggy kernel

code can result in data loss, undefined behavior, or even the

introduction of new security vulnerabilities.

Netfilter [30] is an interface in the Linux kernel that ex-

poses various hooks within the kernel’s networking stack

for the instrumentation of packets. Critically, Netfilter pro-

vides the ability to track connection state in addition to the

packets themselves. This interface is employed by a variety

of userspace software for the instrumentation of packets,

tracking of connection state, and network address translation

(NAT). Perhaps the most notable example of Netfilter, partic-

ularly from a security perspective, is the iptables firewall,
which uses Netfilter to keep track of connection state and

packet metadata to enforce policy on ingress and egress. Clas-

sic BPF [27] provides similar packet filtering functionality

to Netfilter, albeit with three critical differences: classic BPF

is incapable of tracking connection state, but classic BPF is

both more expressive and more performant than Netfilter for

basic packet filtering requirements. Section 2.1 provides more

details on the design and implementation of classic BPF.

Thus far, the system introspection technologies that have

been presented have all suffered from at least one of three

flaws: a lack of production safety, limitations in scope or

observability, and performance bottlenecks. While kernel

modules come close to offering all of the desired properties

of system introspection, they fall short in terms of production



Security Applications of Extended BPF Under the Linux Kernel • 5

safety, a critical property for the adoptability of security tools

built using these technologies. As shown in Table 1, extended

BPF offers the capabilities of kernel-based implementations

with the addition of both production safety, due to its veri-

fier, and richer userspace tracing capabilities, due to built-in

mechanisms such as uprobes [19]. In summary, eBPF can

trace both userspace and kernelspace safely and efficiently,

which in turn can benefit security applications by providing

a rich data source that can be used effectively in production.

4 SECURING THE NETWORKING STACK WITH
EBPF

Since classic BPF was primarily a networking technology

used for packet introspection [27, 42], it is perhaps unsur-

prising that its extended version has seen continued use in

this regard. This section will discuss both the classic BPF

implementations for traditional networking security as well

as current research with respect to achieving networking

stack security with eBPF. Table 2 provides a summary of

the systems discussed in this section, including features and

implementation.

Table 2. A summary of cBPF and eBPF/XDP solutions targeting
Linux networking stack security. "Observability" refers to a system
that enhances visibility of the network with respect to the users;
"Detection" refers to attack detection; "Response" refers to attack re-
sponse. "Automatic" refers to automatic rule generation (i.e. the user
does not need to manually specify rules). ● represents a satisfied
requirement and ❍ represents an unsatisfied requirement.

System Implementation O
b
s
e
r
v
a
b
il
it
y

D
e
te
c
ti
o
n

R
e
s
p
o
n
s
e

A
u
to
m
a
ti
c

tcpdump [42] Classic BPF ● ❍ ❍ ❍

xt_bpf [8] Classic BPF ❍ ● ● ❍

L4Drop [13] eBPF/XDP ❍ ● ● ●

bpf-iptables [3, 4] eBPF/XDP ❍ ● ● ❍

bpfilter [5] eBPF ❍ ● ● ❍

ntopng [10, 11] eBPF ● ● ❍ ❍

Nam and Kim [29] eBPF ● ● ❍ ❍

4.1 Revisiting Classic BPF
Traditionally, classic BPF [27] has provided an efficientmethod

for capturing network traffic in the kernel networking stack

and passing this data back to userspace. Perhaps the most aus-

picious BPF packet capture tool is tcpdump [42], and its asso-

ciated library, libcap. tcpdump offers an efficient userspace

tool for TCP/IP and UDP packet capture and analysis, includ-

ing both inbound and outbound traffic. To do this, it uses

user-specified arguments to automatically generate appro-

priate classic BPF programs, and instrument the appropriate

layers of the kernel networking stack. tcpdump is generally
used as a network visibility tool, providing debugging func-

tionality and basic traffic analysis capabilities to network

administrators. libcap provides the same basic functional-

ity as tcpdump, but instead exposes its API in the form of a

C/C++ library [42].

xt_bpf [8] is a Linux kernel module that augments the

Netfilter subsystem to include the execution of classic BPF

programs. The result is the ability to use BPF programs to

express rules for software that uses the Netfilter interface,

such as the iptables firewall. By allowing users to express

Netfilter rules as BPF programs, xt_bpf enables the creation

of more expressive and highly performant packet filter rules.

While this certainly does not reach the expressiveness of

eBPF [3, 4], it is a step in the right direction for augmenting

iptables with BPF functionality.

While classic BPF solutions like tcpdump, libcap, and
xt_bpf-enabled iptables are fine for simple network traffic

analysis, extended BPF offers significantly greater function-

ality. For instance, tcpdump is incapable of inspecting the

contents of packets and is instead limited to viewing the

metadata associated with packet headers [16, 42] and only

at specific points within the kernel networking stack. By

the time a packet has been captured and its info returned

to userspace, it may be too late to perform any meaningful

action. Additionally, while the rules that are expressible with

classic BPF are certainly an improvement over more tradi-

tional solutions such as Netfilter, the expressiveness of classic

BPF is still a far cry from eBPF, especially considering clas-

sic BPF’s even more restrictive limitations on instructions,

registers, and state management.

Section 4.2 will examine eBPF and XDP (eXpress Data
Path) solutions for networking security. These solutions are

often more sophisticated and more capable than the classic

BPF solutions that preceded them.

4.2 Achieving Networking Stack Security with eBPF
and XDP

This section will present several eBPF- and XDP-based solu-

tions for augmenting Linux networking stack security. First, I

will discuss XDP in more detail than in Section 2 and present

a few systems that make use of it. Following that will be

more traditional eBPF programs for enhancing both network

visibility and security.

XDP [20], or the eXpress Data Path, is a new eBPF program

type that was created by Høiland-Jørgensen et al. and merged

into Linux with version 4.8. Figure 3 provides a simplified

overview of XDP’s architecture. XDP is unique among packet

processing solutions (even other types of BPF programs) in



6 • William Findlay

that it is capable of processing packets before they reach the

main kernel networking stack, via direct memory access. In

practice, this allows XDP to:

1) Retain a significant performance advantage over alterna-

tive methods;

2) Make filtering decisions (e.g. DROP, REDIRECT, ALLOW) about
packets immediately after they cross the hardware bound-

ary into the kernel;

3) Modify packet headers, packet contents, and redirect pack-

ets to different network interfaces, CPUs, or userspace

programs.

Fig. 3. A simplified overview of XDP dataflow with respect to hard-
ware, the kernel networking stack, and userland. Note that XDP
allows direct packet access, filtration, and even modification before
reaching the networking stack and other BPF programs. Adapted
from [20].

4.2.1 Cloudflare’s XDP-Based DDoS Mitigation Stack. XDP’s
security applications are immediately apparent from the

above properties. In particular, its speed coupled with its

ability to preempt the kernel’s main networking stack render

it an ideal solution for NIDS (network intrusion detection

systems) and DDoS mitigation. As of 2017, Cloudflare [2]

had already begun integrating XDP into their DDoS mit-

igation pipeline and presented early empirical results that

XDP would significantly improve performance overhead over

their existing Netfilter-based approach in userspace. In 2018,

Cloudflare presented L4Drop [13], which allows for automat-

ically generated rules to be converted to deployable XDP

programs for DDoS mitigation; L4Drop relies on a separate

program, Gatebot to detect attacks; these attacks are then

converted into XDP rules and deployed to prevent further

packet loss. Empirical results from [13] show that L4Drop is

capable of defeating large-scale DDoS attacks very quickly

and efficiently, with an acceptable impact on performance.

4.2.2 Augmenting iptables with eBPF and XDP. Section 4.1

discussed xt_bpf [8], a kernel module which allows the ex-

pression of Netfilter rules with BPF programs.While this is an

excellent starting point, it does not reach the full expressive-

ness of eBPF. Bertrone et al. [3, 4] proposed bpf-iptables, a
full reimplementation of the traditional iptables firewall in

eBPF. Their solution offers several promising characteristics:

1) Full backwards compatibility with existing iptables rule
definitions;

2) Significant performance improvements for high numbers

of rules;

3) Replacement of Netfilter connection tracking with an

eBPF-based implementation.

While bpf-iptables is sophisticated, it suffers from a

few drawbacks of eBPF at the time it was written, such as the

inability to support loop constructs or limitations in the size

of BPF programs [4, 28]. While these limitations are mostly

circumvented using supported constructs such as eBPF tail

calls, a more complete solution would be possible with the

most recent updates to the eBPF verifier [25, 38]. The authors

of bpf-iptables specifically noted that the limitations im-

posed by eBPF were prohibitive of attempting to implement

more complex packet matching algorithms [4]; due to up-

dates to the verifier, it may now be possible to revisit this

implementation to write a more complete or more performant

clone of iptables.

Additional work to move iptables functionality into

eBPF has been done within the kernel community itself, in

the form of bpfilter [5]. This work is similar to that of

bpf-iptables, except that it functions more as a proof of

concept, and does not include connection tracking logic or

more complex rulesets beyond simply checking source and

destination IP addresses. As such, bpf-iptables represents

a more complete solution, especially if the authors were to

revisit its implementation in light of recent additions to the

verifier, as discussed previously.

4.2.3 eBPF Network Visualization for Observability and Se-
curity. One of the primary use cases for BPF programs is

system-wide tracing for enhancing observability [19]. Thus

far, the solutions covered in this paper have not provided

enhanced network visibility – instead, they have opted to ob-

fuscate the security from the user and focus on the generation

of rules (either manually or automatically) and programmable

expression of these rules through BPF. While there is nothing



Security Applications of Extended BPF Under the Linux Kernel • 7

fundamentally wrong with this approach, it certainly begs

the question as to whether or not other approaches that take

advantage of eBPF’s observability applications may provide

additional security benefits to the user.

ntopng [10] is a network visibility and security tool de-

signed by Deri et al. as a successor to the original ntop soft-

ware. In 2019, Deri et al. [11] further extended ntopng to use

eBPF for data collection; this enables ntopng to leverage the

full extent of eBPF’s system introspection capabilities rather

than relying on the traditional packet inspection approach.

In particular, ntopng makes use of tracepoints and kprobes

to instrument critical functions within the kernel’s network-

ing stack and build a picture of system-level interactions

with ingress and egress data. This allows for a rich visibil-

ity and security model beyond the traditional packet-based

approaches. The ntopng authors obtain remarkable results

both in terms of performance and security benefits [11]. The

increased visibility granted by the eBPF approach enables

ntopng to identify specific processes connecting to malware

hosts, and determine the source and destination of network

traffic in terms of processes, containers, and users. Experi-

mental results also show that ntopng is able to outperform
traditional solutions such as libcap that rely on Netfilter,

while providing enhanced visibility.

Nam and Kim [29] take a different approach to network

visibility and security with eBPF, electing to focus on Packet

tracing but extend the traditional approach to be container

aware. They do this by instrumenting a TC (traffic classifier)

BPF program that targets the eth0 network interface which

serves as a gateway for all inbound and outbound traffic. The

eBPF program can hook into this interface to inspect various

packet header data. This data is augmented by specialized

tracing programs that intercept traffic on various physical

and logical interfaces. The resulting data is then stored in

a database for processing and visualization. The advantage

of using eBPF here is that these interfaces can be traced in

real time, with limited overhead, and the BPF programs can

differentiate between traffic destined for specific containers

and KVM virtual machines.

5 MOVING BEYOND THE NETWORKING STACK
While the systems described in the previous section each

offer unique benefits in their own right, they all lack a focus

on host-based observability and host-based policy, instead

electing to focus on the operating system’s networking stack.

This approach neglects to consider the various other aspects

of system behavior that eBPF can be used to observe — in

other words, eBPF is not being used to its full potential in

the security space.

To rectify this gap in the current research, this section will

present two systems that I have built, ebpH and bpfbox, that
use BPF programs to collect data about processes running

on the system and enforce policy locally. Before presenting

ebpH and bpfbox, however, it is worth considering some of

classic BPF solutions for sandboxing that preceded them.

5.1 Revisiting Classic BPF
Although classic BPF [27] is meant to operate on packets in

the link layer, Dewry [12] re-purposed its Linux implementa-

tion to allow for the definition of system call filtering rules
which could be used to whitelist certain system calls once a

process had entered secure computing (seccomp) mode [1].

This new method of defining dynamic system call filtering

rules was called seccomp-bpf.

The motivation for using classic BPF to add system call

filtering to seccomp came from a number of failures to inte-

grate it with existing kernel subsystems [12], most notably

the ftrace subsystem [33] which provides archaic support

for tracepoint instrumentation. Instead of relying on system-

wide methods for instrumenting system calls within a given

process, Dewry made the observation that userland code

should already have knowledge of the ABI it needs to use

to communicate with kernelspace — the system calls them-

selves [12]. The idea was that userspace applications could

use predefined BPF programs to instrument registers con-

taining the correct system call number and arguments; these

BPF programs would then be used to make filtering decisions

about whether to allow or deny the system call.

seccomp-bpf is by no means a perfect solution, particu-

larly in terms of usability [1]. Classic BPF programs must be

written by hand, one instruction at a time, which can be a

difficult task for programmers who are not familiar with the

paradigm. Programmers must also have an intimate knowl-

edge of the system calls that they wish to allow and deny

within their application. This may not be immediately obvi-

ous, and great care must be taken to avoid certain pitfalls,

such as allowing one system call that can be used to produce

the same effect as another disallowed system call. These us-

ability concerns, coupled with the fact that developers are

required to modify their own applications in order to make

use of seccomp-bpf ultimately diminish its adoptability and

result in seccomp-bpf only being used in the most security-

sensitive applications [1]. These factors motivate the creation

of a fully application-transparent alternative that does not

require intimate knowledge of BPF bytecode; such an alter-

native will be described in Section 5.2.

In addition to the usability concerns outlined above,

seccomp-bpf itself only constitutes part of a complete sand-

boxing solution [1]. As such, it was traditionally necessary



8 • William Findlay

to integrate seccomp-bpf with other approaches, such as

namespace isolation. Traditionally, doing this under the Linux

kernel requires the CAP_SYS_ADMIN privilege, which means

that processes would need to run with this privilege enabled

in order to effectively sandbox themselves, a solution which

is clearly far from ideal. MBOX [23] attempts to solve this

problem by offering a means of sandboxing without requir-

ing root privileges. To do so, it leverages seccomp-bpf and
ptrace(2) to interpose on a process’ system calls. Rather

than simply restricting system calls, it redirects reads and
writes to an isolated, checkpointed filesystem. Changes to

this filesystem can then be committed to the host filesystem

using version-control-like semantics. MBOX similarly handles

network isolation, allowing the user to view a summary of

network activity by the target application and optionally

restrict network access altogether. Since MBOX relies on co-

operation between seccomp-bpf and ptrace(2), it suffers
from the drawbacks associated with the ptrace(2) interface
— namely, relatively high overhead. seccomp-bpf allows this
overhead to be reduced slightly by only interposing on rel-

evant events, but even with this optimization, the incurred

overhead is non-negligible.

5.2 bpfbox: Application-Transparent Sandboxing
with eBPF

One of the primary drawbacks of seccomp-bpf’s approach
is its reliance on the modification of application source code

in order to enforce sandboxing policy. This modification is

not necessarily trivial, may be open to errors by developers,

and in many cases requires significant refactoring of exist-

ing source code in order to integrate effectively [1]. Further,

dynamically adding new sandboxing rules at runtime is not

possible, once a process has already entered secure comput-

ing mode.

Extended BPF can solve this problem by providing a

means of defining and enforcing sandboxing rules dynam-

ically and externally to the target application. bpfbox is a

prototype application that I have written in eBPF to allow

users to write and enforce seccomp-bpf rules in such a man-

ner. By moving rule definition and enforcement outside of

the target application, bpfbox provides full application trans-

parency to the target application. This means that developers

no longer need to modify the source code of their applications

in order for users to take full advantage of seccomp-bpf’s
capabilities, and these rules can be loaded and enforced dy-

namically, both before and during the execution of the target

software.

This approach may draw immediate comparison with

MBOX [23], which was presented in the previous section, but

differs in a few key ways. Firstly, bpfbox relies solely on eBPF

tracepoints to interpose on system calls, whereas MBOX re-

quires the use of the ptrace(2) system call (and much of the

performance overhead associated with it). Secondly, bpfbox
allows for the system-wide enforcement of sandboxing pol-

icy, whereas MBOX must be used as a wrapper to execute the

target application. Ultimately, bpfbox and MBOX attempt to

solve fundamentally different problems, although they share

a common subgoal of increased application transparency for

sandboxing.

It is worth noting that although bpfbox reimplements

seccomp-bpf’s basic functionality, it constitutes a completely

separate solution. Instead of using the seccomp(2) system

call to enter a secure computing state, bpfbox uses tail-called
BPF programs to define the entrypoint at which a given pro-

cess should start enforcing. Once a process has started en-

forcing, it begins tail-calling a second set of BPF programs on

every system call. These BPF programs define rules that spec-

ify which system call should be allowed; all system calls that

do not match a rule are denied by default. Figure 4 provides

an overview of the way bpfbox makes policy decisions.

To enforce policy, bpfbox makes use of the bpf_send_
signal helper that was introduced to eBPF in Linux 5.3

[6]. This helper function allows extended BPF programs to

send real-time signals to target userland processes from ker-

nelspace. Since these signals come directly from the kernel,

they are not associated with the delays that typically arise

from sending signals between processes in userspace (which

are instead delivered based on context switch timings). This

means that bpfbox can enforce policy instantaneously with

respect to the system call in question, completely externally

to the target application.

While bpfbox currently attempts to preserve seccomp-bpf
functionality, future work may involve modifying bpfbox to

generate profiles automatically based on observed applica-

tion behavior. This would likely constitute a hybrid approach,

working in conjunction with user-defined rules and logging

profile changes for later analysis. Naturally, user-defined

rules would supersede the automatically generated ones.

5.3 ebpH: Building System Call Profiles with BPF
Programs

eBPF’s unique combination of broad scope, efficiency, and

production safety makes it a very attractive data collection

option for intrusion detection systems. However, current

research tends to focus on network intrusion detection rather

than host-based approaches. I wrote ebpH [14], an eBPF host-

based anomaly detection system, to fill this gap in the existing

research.



Security Applications of Extended BPF Under the Linux Kernel • 9

Fig. 4. An overview of the control flow of bpfbox when a traced process makes a system call.

ebpH effectively constitutes an eBPF reimplementation of

pH (Process Homeostasis), an early anomaly detection system

written by Somayaji [35]. The central idea of both systems

is the same: using system call patterns to build behavioral

profiles for running processes on the system, and flagging

new entries to these profiles as anomalous [14, 15, 35]. The

key difference between the two systems lies in implemen-

tation; whereas pH was implemented as a patch for Linux

2.2, ebpH is implemented entirely using eBPF programs and

a userspace daemon [14]. In effect, this means that ebpH ’s

advantages over the original pH system roughly correspond

to the advantages of eBPF over traditional kernel-based im-

plementations, as presented in Section 3. In particular, the

original pH system was necessarily unsafe for production de-

ployments and lacked portability to future versions of Linux,

while ebpH should be compatible with all versions of Linux

higher than 5.3 and perfectly safe for use in production.

Indeed, experimental data from [14] has shown that ebpH
is able to accomplish much of the same functionality as the

original system (with plans for a full implementation in the

future) and that in many cases it is able to either keep up

with or even outperform the original system in terms of

performance overhead. This is a remarkable result, and shows

that eBPF can hold its own when compared with equivalent

kernel-based implementations, even while instrumenting an

immensely frequent, system-wide event such as system call

invocations.

The results from preliminary testing of ebpH are signifi-
cant beyond proving the merit of ebpH itself; rather, they are

indicative that building host-based anomaly detections with

eBPF is not only a feasible endeavor, but that it is worthwhile

to do so in the first place. ebpH was able to implement the

features of the original pH while retaining good performance,

with the additional production safety guarantees associated

with an eBPF implementation. This approach is extensible

to other kernel-based approaches as well; in the future, it is

likely that we will see many more kernel-based IDS imple-

mentations ported to eBPF, particularly as the technology

continues to improve over time.

6 DISCUSSION
This paper has examined a variety of classic and extended

BPF solutions for enhancing the security of Linux systems.

Here, I will discuss the current research trends indicated by

the results summarized in Section 4 and Section 5 and make

suggestions for future work therein. Figure 5 presents an

overview of the research covered in this paper and will help

contextualize the rest of this section.

6.1 BPF Security Research Trends
As shown in Figure 5, with the exception of seccomp-bpf
and derived solutions such as MBOX, both classic and extended
BPF OS security research tends to focus on networking stack

security with very little deviation. I believe that there are

three factors largely responsible for this phenomenon:



10 • William Findlay

Fig. 5. An overview of the research covered in this paper. Note that existing eBPF solutions focus exclusively on networking stack security.
ebpH and bpfbox are attempts at exploring other security applications of eBPF.

1) As classic BPF was largely focused on the networking

stack, it is difficult to escape that same association in its

extended counterpart;

2) XDP is a very powerful technology, and so presents a very

compelling method to build network-focused security

solutions;

3) Once a research trend has been established, it is likely

that future work will continue to follow a similar path.

Existing research, while largely networking-stack-focused,

may be grouped into several subcategories. For instance,

some solutions, such as ntopng [11], focus on network vis-

ibility, while others focus predominantly on the definition

and enforcement of policy. Both of these approaches may

be effective in their own right, although there appears to be

little cross-over between the two in the current literature.

It may be worth examining the effectiveness of a combined

approach that takes the enhanced visibility provided by a

system like ntopng and combines it with the automatic rule

generation provided by L4Drop [13].

Within the policy definition and enforcement subcate-

gory, systems may be further divided into those that generate

policy automatically and those that focus on user-defined

rules. bpf-iptables [3, 4] and bpfilter [5] take the user-

defined approach, whereas L4Drop [13] focuses on automatic

policy generation. Naturally, the user-defined approach typi-

cally results in fewer false positives, but relies on experts to

write policy by hand. Further, these experts must necessar-

ily be familiar with the language used to define the rules in

question. For systems that preserve widely-accepted seman-

tics, such as bpf-iptables, this may not be such an issue, as

most users will already be familiar with the syntax used to

define rules, but for systems like L4Drop that rely on gener-

ated BPF programs for policy enforcement, the possibility of

hand-written rules may not be a viable approach.

As eBPF is a relatively new technology in the Linux trac-

ing landscape, it is under a constant state of change and is

constantly being improved and iterated upon. Consequen-

tially, many of the research systems discussed in this paper

were limited by the idiosyncrasies of early versions of eBPF.

For instance, solutions implemented before Linux 5.3 would

have been constrained by a lack of bounded loop support

and solutions implemented before Linux 5.1 would have been

constrained by a significantly smaller upper limit on BPF

instructions per program. These two changes alone invite

the potential for improving many of the existing systems

presented in this paper. As a simple example, L4Drop [13] re-

lied on a separate program, Gatekeeper for attack detection,

due to highly limited complexity bounds on BPF programs

at the time — with modern eBPF, it would now be possible



Security Applications of Extended BPF Under the Linux Kernel • 11

to achieve a fully eBPF/XDP-based implementation without

relying on other technologies. This may have significant per-

formance implications for L4Drop.

6.2 Future Work
As described in Section 3, eBPF can be used for far more than

tracing network events; rather, it is a tool capable of instru-

menting the entire system. Therefore, the focus of current

research on the networking stack represents a small fraction

of eBPF’s capabilities concerning OS security. To rectify the

lack of host-focused eBPF security research, I have presented

two systems that use eBPF for security in novel ways, ebpH
and bpfbox. Both of these systems are effective in their own

right, and represent a step toward host-based policy creation

and enforcement through eBPF-enabled observability. This

section will present some topics for future work with respect

to these two systems.

6.2.1 Extending ebpH to Use Other Data Sources. The current
version of ebpH uses eBPF tracepoints to instrument system

calls on every process on the system. These system calls are

then contextualized into sequences that ebpH uses to inform

the creation of profiles for each executable on the system

[14]. While this approach mirrors that of its predecessor, pH
[35], it is not necessarily conducive to monitoring modern

applications that are often complex and non-deterministic

in nature. To rectify this problem, future versions of ebpH
might incorporate other sources of data in addition to system

call sequences.

For example, ebpH could look at things like frequency

of context switches, CPU usage, block I/O, network activity,

memory allocations, or even user input. Due to eBPF’s low

overhead and the ability for eBPF programs to communicate

with each other via direct map access, this endeavor would

be significantly less complicated than previously would have

been possible. By integrating several sources of data in this

way, ebpH can get a much clearer idea of how processes

behave normally, and therefore what constitutes abnormal

behavior.

6.2.2 Extending bpfbox to Generate Behavioral Profiles. The
results from ebpH [14] have shown that eBPF can be used

to efficiently interpose on every system call, generating be-

havioral profiles for each executable on the system. It may

be feasible to take a similar approach with bpfbox, profiling
the behavior of applications under normal use and using this

to generate profiles to inform future policy. If these profiles

were semantically understandable by humans, they could

even be modified manually to cover edge cases that did not

come up in testing.

Inoue [21] has shown that this technique can be used

to great effect in Java applications, although it remains to

be seen whether this model can be extended to effectively

capture the behavior of native applications. In order to ef-

fectively re-implement this technique in eBPF, it would be

necessary to come up with a Java-like permission model for

ordinary Linux applications, which would be a separate en-

deavor in and of itself. However, the benefits of integrating

such functionality with bpfbox could be enormous.

7 CONCLUSION
Extended BPF represents a powerful new force in OS security,

by providing an efficient, production-safe, and system-wide

means of instrumenting all system behavior, from userspace

functions to kernelspace functions to incoming packets, sys-

tem calls, signals, and everything in between. Before the

advent of eBPF, system introspection was relegated to poor

alternatives that generally lacked in terms of the safety or

efficiency required for reliable use in production. By solving

this problem, eBPF opens new possibilities for security appli-

cations, resulting in the ability for the dynamic creation and

enforcement of policy in real time, based on observed system

behavior. This has implications for a wide variety of security

solutions, such as intrusion detection, DDoS mitigation, and

sandboxing.

Current trends in eBPF-related security research are only

scratching the surface of what eBPF can do in this space.

While new systems such as ebpH and bpfbox are exploring
new possibilities for eBPF’s security benefits, there still re-

mains a lot of room for exploration in this field. In particular,

I envision that future solutions will incorporate several as-

pects of system behavior in order to build a more complete

model for analysis; one can already see this pattern beginning

to emerge in existing solutions such as ntopng [11], which
contextualizes network-level events based on system-level

data.

Ultimately, the future of extended BPF in OS security is

bright. Current solutions have shown that it can be an effec-

tive means of data collection, dynamic policy generation, and

real-time policy enforcement; further, this can be achieved

with the low overhead and high safety required for produc-

tion use cases. As eBPF is a relatively new technology, it con-

tinues to improve rapidly over time and recent developments

such as the introduction of bounded loop support and a higher

upper limit on the number of BPF instructions per program

have greatly increased the theoretical complexity limit of

BPF programs. New helper functions like bpf_send_signal
have provided means of enforcing policy directly from BPF

programs. This trend of improvement is expected to continue



12 • William Findlay

for years to come, and will likely result in an even more at-

tractive paradigm for the development of many future OS

security endeavors.

REFERENCES
[1] J. Anderson, “A Comparison of Unix Sandboxing Tech-

niques”, FreeBSD Journal, 2017. [Online]. Available:
https://www.engr.mun.ca/~anderson/publications/

2017/sandbox-comparison.pdf.

[2] G. Bertin, “XDP in Practice: Integrating XDP into our

DDoS Mitigation Pipeline”, in Technical Conference on
Linux Networking, Netdev, vol. 2, 2017.

[3] M. Bertrone, S. Miano, J. Pi, et al., “Toward an eBPF-

Based Clone of iptables”, in Netdev 18, 2018. [Online].
Available: https://mbertrone.github.io/documents/20-

eBPF-Iptables-Netdev.pdf.

[4] M. Bertrone, S. Miano, F. Risso, and M. Tumolo, “Ac-

celerating Linux Security with eBPF iptables”, in SIG-
COMM ’18: Proceedings of the ACM SIGCOMM 2018
Conference on Posters and Demos, Aug. 2018, pp. 108–
110, isbn: 978-1-4503-5915-3. doi: 10.1145/3234200.

3234228. [Online]. Available: https://doi.org/10.1145/

3234200.3234228.

[5] D. Borkmann, net: add bpfilter, Feb. 2018. [Online].
Available: https://lwn.net/Articles/747504/.

[6] bpf-helpers(7) Linux Programmer’s Manual, Linux, Nov.
2019.

[7] bpf(2) Linux Programmer’s Manual, Linux, Aug. 2019.
[8] W. de Bruijn, “netfilter: x_tables: add xt_bpf match”,

The Linux Foundation, Kernel Patch, Jan. 2013. [On-

line]. Available: https : / / git . kernel . org / pub / scm /

linux /kernel / git / torvalds / linux . git / commit / ?id=

e6f30c731718db45cec38096%204dfee210307cfc4a.

[9] J. Cespedes and P. Machata, ltrace(1) Linux User’s Man-
ual, Ltrace project, Jan. 2013.

[10] L. Deri, M. Martinelli, and A. Cardigliano, “Realtime

High-SpeedNetwork TrafficMonitoring Using ntopng”,

in 28th Large Installation System Administration Con-
ference (LISA14), Seattle, WA: USENIX Association,

Nov. 2014, pp. 78–88, isbn: 978-1-931971-17-1. [On-

line]. Available: https://www.usenix.org/conference/

lisa14/conference-program/presentation/deri-luca.

[11] L. Deri, S. Sabella, and S. Mainardi, “Combining System

Visibility and Security Using eBPF.”, in ITASEC, 2019.
[Online]. Available: https://pdfs.semanticscholar.org/

7d3f / 8396a7407c62a0344ba % 2034b9addc16f73bbfb .

pdf.

[12] W. Dewry, “dynamic seccomp policies (using BPF fil-

ters)”, The Linux Foundation, Mailing List RFC, Jan.

2012. [Online]. Available: https://lwn.net/Articles/

475019/.

[13] A. Fabre, L4Drop: XDP DDoS Mitigations, Nov. 2018.
[Online]. Available: https : / / blog . cloudflare . com /

l4drop-xdp-ebpf-based-ddos-mitigations/.

[14] W. Findlay, “Host-Based Anomaly Detection with Ex-

tended BPF”, Honours Thesis, Carleton University, Apr.

2020. [Online]. Available: https://williamfindlay.com/

written/thesis.pdf.

[15] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff,

“A Sense of Self for Unix Processes”, in Proceedings 1996
IEEE Symposium on Security and Privacy, May 1996,

pp. 120–128. doi: 10.1109/SECPRI.1996.502675.

[16] F. Fuentes and D. C. Kar, “Ethereal vs. Tcpdump: A

Comparative Study on Packet Sniffing Tools for Edu-

cational Purpose”, J. Comput. Sci. Coll., vol. 20, no. 4,
pp. 169–176, Apr. 2005, issn: 1937-4771.

[17] GNU Project, GDB: The GNU Project Debugger, 2020.
[Online]. Available: https://www.gnu.org/software/

gdb/.

[18] B. Gregg, strace Wow Much Syscall, 2014. [Online].
Available: http://www.brendangregg.com/blog/2014-

05-11/strace-wow-much-syscall.html.

[19] B. Gregg, BPF Performance Tools. Addison-Wesley Pro-

fessional, 2019, isbn: 0-13-655482-2.

[20] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, et
al., “The Express Data Path: Fast Programmable Packet

Processing in the Operating SystemKernel”, in Proceed-
ings of the 14th International Conference on Emerging
Networking Experiments and Technologies, 2018, pp. 54–
66. doi: 10.1145/3281411.3281443. [Online]. Available:

https://doi.org/10.1145/3281411.3281443.

[21] H. Inoue, “Anomaly Detection in Dynamic Execution

Environments”, PhD thesis, University of New Mexico,

2005. [Online]. Available: https://www.cs.unm.edu/

~forrest/dissertations/inoue-dissertation.pdf.

[22] J. Keniston, A. Mavinakayanahalli, P. Panchamukhi,

and V. Prasad, “Ptrace, Utrace, Uprobes: Lightweight,

Dynamic Tracing of User Apps”, in Proceedings of the
Linux Symposium, vol. 1, pp. 215–224. [Online]. Avail-

able: https://www.kernel.org/doc/ols/2007/ols2007v1-

pages-215-224.pdf.

[23] T. Kim and N. Zeldovich, “Practical and Effective Sand-

boxing for Non-Root Users”, in The 2013 USENIX An-
nual Technical Conference (USENIXATC 13), 2013, pp. 139–
144.

[24] B. Kuperman and E. Spafford, “Generation of Applica-

tion Level Audit Data via Library Interposition”, Sep.

1999.

https://www.engr.mun.ca/~anderson/publications/2017/sandbox-comparison.pdf
https://www.engr.mun.ca/~anderson/publications/2017/sandbox-comparison.pdf
https://mbertrone.github.io/documents/20-eBPF-Iptables-Netdev.pdf
https://mbertrone.github.io/documents/20-eBPF-Iptables-Netdev.pdf
https://doi.org/10.1145/3234200.3234228
https://doi.org/10.1145/3234200.3234228
https://doi.org/10.1145/3234200.3234228
https://doi.org/10.1145/3234200.3234228
https://lwn.net/Articles/747504/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e6f30c731718db45cec38096%204dfee210307cfc4a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e6f30c731718db45cec38096%204dfee210307cfc4a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e6f30c731718db45cec38096%204dfee210307cfc4a
https://www.usenix.org/conference/lisa14/conference-program/presentation/deri-luca
https://www.usenix.org/conference/lisa14/conference-program/presentation/deri-luca
https://pdfs.semanticscholar.org/7d3f/8396a7407c62a0344ba%2034b9addc16f73bbfb.pdf
https://pdfs.semanticscholar.org/7d3f/8396a7407c62a0344ba%2034b9addc16f73bbfb.pdf
https://pdfs.semanticscholar.org/7d3f/8396a7407c62a0344ba%2034b9addc16f73bbfb.pdf
https://lwn.net/Articles/475019/
https://lwn.net/Articles/475019/
https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations/
https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations/
https://williamfindlay.com/written/thesis.pdf
https://williamfindlay.com/written/thesis.pdf
https://doi.org/10.1109/SECPRI.1996.502675
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
http://www.brendangregg.com/blog/2014-05-11/strace-wow-much-syscall.html
http://www.brendangregg.com/blog/2014-05-11/strace-wow-much-syscall.html
https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1145/3281411.3281443
https://www.cs.unm.edu/~forrest/dissertations/inoue-dissertation.pdf
https://www.cs.unm.edu/~forrest/dissertations/inoue-dissertation.pdf
https://www.kernel.org/doc/ols/2007/ols2007v1-pages-215-224.pdf
https://www.kernel.org/doc/ols/2007/ols2007v1-pages-215-224.pdf


Security Applications of Extended BPF Under the Linux Kernel • 13

[25] Linux, kernel/bpf/verifier.c, Mar. 2020. [Online]. Avail-

able: https://git.kernel.org/pub/scm/linux/kernel/git/

torvalds/linux.git/tree/kernel/bpf/verifier.c?h=v5.6-

rc5.

[26] LTTng Project, LTTng v2.11 - LTTng Documentation,
Oct. 2019. [Online]. Available: https://lttng.org/docs/

v2.11/.

[27] S. McCanne and V. Jacobson, “The BSD Packet Filter:

A New Architecture for User-level Packet Capture”, in

USENIX Winter 1993, vol. 93, 1992. [Online]. Available:
https://www.tcpdump.org/papers/bpf-usenix93.pdf.

[28] S. Miano, M. Bertrone, F. Risso, et al., “Creating Com-

plex Network Services with eBPF: Experience and

Lessons Learned”, in 2018 IEEE 19th International Con-
ference on High Performance Switching and Routing
(HPSR), IEEE, 2018, pp. 1–8. doi: 10.1109/HPSR.2018.
8850758. [Online]. Available: https://ieeexplore.ieee.

org/abstract/document/8850758.

[29] T. Nam and J. Kim, “Open-Source IO Visor eBPF-Based

Packet Tracing onMultiple Network Interfaces of Linux

Boxes”, in 2017 International Conference on Information
and Communication Technology Convergence (ICTC),
Oct. 2017, pp. 324–326. doi: 10 . 1109 / ICTC . 2017 .

8190996.

[30] Netfilter Project, Netfilter, Apr. 2020. [Online]. Avail-
able: https://www.netfilter.org/.

[31] ptrace(2) Linux User’s Manual, Oct. 2019.
[32] Red Hat, Understanding How SystemTap Works Red

Hat Enterprise Linux 5. [Online]. Available: https : / /
access.redhat.com/documentation/en-us/red_hat_

enterprise _ linux / 5 / html / systemtap _ beginners _

guide/understanding-how-systemtap-works.

[33] S. Rostedt, Documentation/ftrace.txt, 2008. [Online].
Available: https://lwn.net/Articles/290277/.

[34] Seccomp BPF (SECure COMPuting with Filters). [Online].
Available: https://www.kernel.org/doc/html/v4.16/

userspace-api/seccomp_filter.html.

[35] A. B. Somayaji, “Operating System Stability and Secu-

rity through Process Homeostasis”, PhD thesis, Uni-

versity of NewMexico, 2002. [Online]. Available: https:

//people.scs.carleton.ca/~soma/pubs/soma-diss.pdf.

[36] A. Starovoitov, “Tracing Filters with BPF”, The Linux

Foundation, RFC Patch 0/5, Dec. 2013. [Online]. Avail-

able: https://lkml.org/lkml/2013/12/2/1066.

[37] A. Starovoitov, “net: filter: rework/optimize internal

BPF interpreter’s instruction set”, The Linux Founda-

tion, Kernel Patch, Mar. 2014. [Online]. Available: https:

//git.kernel.org/pub/scm/linux/kernel/git/torvalds/

linux.git/commit/?id=bd4cf0ed331a275e9bf5a49e%

206d0fd55dffc551b8.

[38] A. Starovoitov andD. Borkmann, bpf: introduce bounded
loops, Jun. 2019. [Online]. Available: https://git.kernel.
org/pub/scm/linux/kernel/git/davem/net-next.git/

commit/?id=2589726d12a1b12eaaa93c7f1ea64287e%

20383c7a5.

[39] Strace Project, strace. [Online]. Available: https://strace.
io/.

[40] strace(1) Linux User’s Manual, 5.3, Strace Project, Sep.
2019.

[41] Sysdig Inc., draios/sysdig, Nov. 2019. [Online]. Avail-
able: https://github.com/draios/sysdig.

[42] Tcpdump/Libpcap Public Repository, Sep. 2010. [Online].
Available: https://www.tcpdump.org/.

[43] V. Weaver, perf_event_open(2) Linux User’s Manual,
Oct. 2019.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/bpf/verifier.c?h=v5.6-rc5
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/bpf/verifier.c?h=v5.6-rc5
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/bpf/verifier.c?h=v5.6-rc5
https://lttng.org/docs/v2.11/
https://lttng.org/docs/v2.11/
https://www.tcpdump.org/papers/bpf-usenix93.pdf
https://doi.org/10.1109/HPSR.2018.8850758
https://doi.org/10.1109/HPSR.2018.8850758
https://ieeexplore.ieee.org/abstract/document/8850758
https://ieeexplore.ieee.org/abstract/document/8850758
https://doi.org/10.1109/ICTC.2017.8190996
https://doi.org/10.1109/ICTC.2017.8190996
https://www.netfilter.org/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/systemtap_beginners_guide/understanding-how-systemtap-works
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/systemtap_beginners_guide/understanding-how-systemtap-works
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/systemtap_beginners_guide/understanding-how-systemtap-works
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/systemtap_beginners_guide/understanding-how-systemtap-works
https://lwn.net/Articles/290277/
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://people.scs.carleton.ca/~soma/pubs/soma-diss.pdf
https://people.scs.carleton.ca/~soma/pubs/soma-diss.pdf
https://lkml.org/lkml/2013/12/2/1066
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bd4cf0ed331a275e9bf5a49e%206d0fd55dffc551b8
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bd4cf0ed331a275e9bf5a49e%206d0fd55dffc551b8
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bd4cf0ed331a275e9bf5a49e%206d0fd55dffc551b8
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bd4cf0ed331a275e9bf5a49e%206d0fd55dffc551b8
https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/commit/?id=2589726d12a1b12eaaa93c7f1ea64287e%20383c7a5
https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/commit/?id=2589726d12a1b12eaaa93c7f1ea64287e%20383c7a5
https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/commit/?id=2589726d12a1b12eaaa93c7f1ea64287e%20383c7a5
https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/commit/?id=2589726d12a1b12eaaa93c7f1ea64287e%20383c7a5
https://strace.io/
https://strace.io/
https://github.com/draios/sysdig
https://www.tcpdump.org/

	Abstract
	1 Introduction
	2 Background
	2.1 Classic BPF
	2.2 Extended BPF
	2.3 Naming Conventions in this Paper

	3 Comparing eBPF to Other System Introspection Techniques
	4 Securing the Networking Stack with eBPF
	4.1 Revisiting Classic BPF
	4.2 Achieving Networking Stack Security with eBPF and XDP

	5 Moving Beyond the Networking Stack
	5.1 Revisiting Classic BPF
	5.2 : Application-Transparent Sandboxing with eBPF
	5.3 : Building System Call Profiles with BPF Programs

	6 Discussion
	6.1 BPF Security Research Trends
	6.2 Future Work

	7 Conclusion

